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ABSTRACT

Expressicns were derived for the mean and mean square

value of the output of a phase detector to which is applied a

sinusoidal signal corrupted by narrow-band Gaussian noise,

together with an oscillator reference of the same frequency as

the signal but displaced in phase. The analysis was based on

the model of a balanced phase detector composed of peak-detecting

diodes producing a difference output from the two halves. Based

on the above output parameters, a measure of phase detector

performance was defined in terms of a "noise-to-noise ratio,"

the square root of the output variance without signal divided by

the same quantity with the signal present. The case where signal

and reference are in quadrature was treated in detail, yielding

curves of this ratio under varying input and reference conditions.

In addition, the voltage output "signal-to-noise ratio" was

calculated as a function of the phase angle between signal and

reference, and the resulting graphs show the effects of reference

level and input signal-to-noise power ratio.
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1. INRODUCTION

With the increasing use of phase-comparison techniques in

the design of guidance and communication equipment, it is important

to know how devices providing such operation behave under varying

conditions of te signal and corrupting noise environment. Ideally,
"a phase "comparator" or "detector" combines a received signal and

"a locally generated reference waveform in some manner to produce

an output voltage vhich is proportional to the phase difference

between these inputs. However, in practice this desired linear

operation does not continue indefinitely as the phase difference

increases in magnitude, instead resulting in the familiar leveling

off and stbsequent decrease in detector output voltage.1)2 In

cases where the received and reference waveforms are relatively

unperturbed by noise and differ little in their time behavior,

the non-linear portion of the phasek'.-%lector charecteristic can

be ignored and a linear analysis of its performance carried out. 3

But with the advent of systems working in a high noise environment,

large fluctuations are superimposed on the received signal which

cause corresponding phase deviations from the normally steedy

reference waveform, resulting in excursions beyond linear detector

operation.

It was for the purpose of considering the performance of

phase detectors under such high level noise conditions that the

present study was undertaken. In analysis previously carried out,

the simplifying assumption was made thtft the reierence amplitude

was much larger than the received signal magnitude. resulting in

the phase detector output voltage being independent of this

reference amplitude. 5 While this is a valid approximation in

practice for relatively unperturbed signals, it no longer holds

when the added noise fluctuations are sufficient to make the

over-all received amplitude comparable to the reference magnitude.

The present investigation proceeded under general signal, noise,

and reference parameter conditions.
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S2. MODEL OF P•AS DETCTOR OPERATION

The noise performance of the phase detector is stadied

here on the basis of a model of its operation which has been

used in previous applications, to automatic frequency ani phase-

control systems. It is assumed to be a balanced phase detector

consisting of two peak-detecting diodes and associated filter

circuits, as shown belov in Figure 1, together with the usual

e r

Reference e 1
Voltage

-,D 

ol/t ag

FIGURE 1 - SCEEKATIC DIAGRAM OF PHASE D3ECTOR

transformer windings to introduce the received and reference

voltages. 1 ' 2 The expression for the output voltage e0 of the

phase detector can readily be obtained from a vector diagram of

the circuit volt-ages, once the latter are written in terms of

amplitude and phase.
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For the present noise analysis, the received voltage ei

appearing within the diode circuits is taken to consist of a

cosinusoidal signal of angular frequency w, upon which is super-

imposed narrow-band Gaussian noise centered at w. By the well-

known Rice-Bennett representation, ei can be expressed in the

desired polar form by:7' 8

ei = 1)cos 4P , (i)

where p is the amplitude of signal plus noise:

p = + x(t 2 + y2(t)]l/2 W()

A = the amplitude of the received sgnal.,

x(t), y(t) = the slowly time-varying in-phase and

quadrature amplitudes, respectively, of the

noise centered at w, which are independent

Gassiau random variables with mean value

zero and standard deviation 6, and

d2 = the total woise power (for unit resistance);

=w1 t + (P (3)

q4 being the phase of signal plus noise:

(i= tan-1 ) )(14)

The reference voltage er within the diode circuits is a

sine wave, assuied to have the same angular frequency as the signal

portion of ei and an arbitrary phase:

ar = B sin 2  ' (5)

where B = the amplitude of the reference voltage,
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P 9 •_% ,(6)

fo being the arbitrary phase angle. Thus, when T = 0, er 1s

in quadrature with the signal portion of ei, a condition typical

of many phase detector applications.

The filter circuits associated with the diodes (See Figure 1)

ame made with sufficient bandwidth to pass the narrow-band noise

components, and at the same time reproduce the crests of the

half-wave rectified voltage. Thus, the peak-detected contributions

of both halves of the balanced circuit are seen from the vector

diagram of the circuit voltages in Figure 2, where their positions

take into account the quacrature relation. 6 To one of the diode

hei .P

e 2

FIGURE 2 - VECTOR DIAGRAM OF CIRCUIT VOLTAGES

circuits is applied the vector sum of ei and haLf of the reference

voltage e/2 during its conduction interval, while the other receives

the vector difference. Upon peak detection, each half produces a

rectified filtered output voltage equal to the magnitude of the total

tI
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applied voltage vector. Noting the magnitudes of tae individual vectors

on Figure 2 (obtained from Equations (1) and (5)), and defining the

phase difference ( between ei and er in addition to that of quadrature:

SatTi" - 2  , (7)

then the output voltages e 1 and e 2 of the two halves are obtained

from the triangle law:

e = [p +-B + Bp sin p] / , (8)

e2 T= - BBpsi ] . (9)

where the positive square root is always understood, and from

Equatimns (3), (6), and (7):

P n , + • (10)

Since the ladividual peak voltages appear across the

output terminals in opposite directions. the phase detector

output voltage e0 consists of their difference:

e. = e1 - e. . (11)

Equations (8) through (11) give the analytical representation of

phase detector behavior, to be used in subsequent calculations.
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.;. STATISTICAL PRaO S OF TM OtPffJT

TMe expresnions deried for the phaset letector show that

the output voltUge depends on the statistical nature of the noiso•

superimposed upon the received signal. As a result, the performance

of the phase detector can only be described in terms of probability

distributions and their associated moents. Two of the most

useful factors related to these are the "man" and "mean square"

values of the output, which are treated in this analysis in that

order.

Noting froa Equations (8) through (11) that the output

voltage e is expressed iL terms of the amplitude p and phase

4i of the sIgnal plus noise, it is necessary to know the Joint

probability distribution of these random variables in order to

forwalate the desired output properties. Such a density function

is obtained from the corresponding description of the in-phase and

quadrature amplitude variables of the corrupting narrow-band noise,

x and y, respectively. It was assumed that they were indepeft

Geussian random variables with nean value zero and standard

deviation d, where e is the sum of the equal Individual noise

powers 1/2 of the two components, called he "total noise power."

Thus, the joint distribution W2 (x,y) takes the simplified form:8

d [- (.2 + (12)

By, mans of Equations (2) and (4) treated as transf3ruation

relations, the desired joint distribution W2(p, 1i) of amplitude and

phase of the signal plus noise is obtained8 :

p [( 2 +A2 " cos i](13)S- "
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The application of Equation (13) and the expression for e in

termn of p and i to the well-known statistical averaging

formulas yields the mean value Ke 0> and mean square value ($O2)

of the phase detector output:

<°> Jo

((15

where the integrations are carried out over the appropriate ranges

of the amplitude and phase random variables.

While the desired calculations can be carried out directly

with Equations (14) and (15), it is more convenient to convert

these expressions back into the original in-phase and quadrature

noise variables. As a result, the following equivalent pair of

formulas is obtained:

<e0) = f e ,(x.,Y) W2 (x~y)dxdy , (16)

f fWe(xY)]2 W (xy)dxcy (.7)

where x and y have infinite ranges, and the phase detector output

voltage is expressed in terms of them with the aid of Equations

(2), (4), and (8) through (11):
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eo(xy) + A + i

2 B 211/2 (48)

Together with Eqpuation (12), Equations (16) through (18) form the

ba-sis for the calculation of Keo) and. (eO02) in this study.

3.1 THE OUP1 MWl VALUE

To aid in the application of Equation (16), it was found

advantageous to express the pL•ae detector output voltage eo(X,y)

in integral form. The desired expression results from a table of

Laplace transforms: 9

e oXx,yd sinh -Bt[(x+A)sin qo+ y coo

.exp ý-t ((x+A)2 +y2 +7 (9

which is valid over the infinite ranges of integration for x and

y. Based on the above representation, the detailed evaluation

of <eý) is carried out in Appendix A, which yields the following

expression for the output mean value:

Ke) =ý /~exp I. + (a4ia4)I WO)

where Io(x) and I1(x) are modified Bessel functions of the first

kind, and Oi4 are the normalized parameters:

1 aA2 + B p .- AB ,o (21)
s22
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Examination of Equation (20) with the aid of Equati ii (21)

shows that (e.) has the expected behavior for extreme values of

the above parameters, based on the model used. Thus, when

either the signal or reference amplitude vanishes, or these two

sinusoidal components are in quadrature (q•o = 0), the output

mean value is zero. On the other hand, in the absence of noise

(6 = 0), the phase detector yields a mean value:

e = A2+JAB sin - A2 AB sin , (22)

which for the case when signal and reference are in phase

((o = %/2), reduces to just the reference amplitude B.

3.2 TIM OUTPUT MEAN SQUARE VALUE

As in the case of the mean value, the square of the phase

detector output voltage was expressed in integral form to

facilitate the evaluation of (e 0
2 ) from Equation (17). This is

obtained from the following equivalent expression for e0
2 (xy),

derived from Equations (8) through (11.):

e2(x,y) = 2Bp sin(i + o (23)

From the table of Laplace transforms, the resulting integral is:9

e2(x,y) = 2B [(x + A) sin o + Y cos 4P.

t I, t L(x+A) sin 90 + y cos •

JJo

- exp I- t[(x+A)2 +Y2 +2 ]l. (2 4 )

which is again valid over the infinite ranges of integration for

x and y. As derived in Appendix B, the resulting expression for
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Tic(e 0 
2 ) is a compl~icated power series in e2 [see Equation (21)], whose

coefficients contain integrals involving confluent hypergeometric

fimct~ons, for which no exact closed form evaluation can be

found. Consideration of this general formula will not be

undertaken here, since of prim interest are calculations of

phase detector performance which are treated in the following

sections.
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i. CALCULATION OF OUTPUT NOISE-TO-NOISR RATIO

While the mean and mean square values previously determined

give a partial statistical description of the phase detector output,

these factors in themselves do not provide a criterion for the

performance of such a device in the presence of noise. In general,

a detection system has two states of interest, one when a signal

is not present and one when a signal is present. From this it

is natural to seek some parameter with which to compare the effect

of the ever-present noise on both states. Since in each case

there are output fluctuations about some mean value (which may be

zero), a suitable choice would be the "variance of the output,"

denoted by 6 o. In terms of the moments previously discussed) this

quantity is defined by:

602= (e2)- [(en)] 2 (25)

For the case where the signal is present, the expressions

derived in Appendices A and B are substituted directly into

Equation (25), and the resulting variance is denoted by 6.

When the signal is not present, an evaluation of these formulas

at A = 0 must first be made, with the variance thus obtained

being denoted by 6 n2, since only noise is received here. Frombeinn

these two definitions, the criterion of performance for the phase

detector is taken to be the noise-to-signal plus noise output

variance ratio, to the one-half power. This quantity, 6n/16s

is called more briefly the "noise-to-noise ratio." ,0.,ii Since

the output i.ean value was seen to be zero for A = 0, this ratio

can be written in terms of the moments from Equation (25) in the

following form:

6n ýe oAZV (26)KL [')]_ o
1'e
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410

where the evaluation at zero signal amplitude is indicated above.

Equation (26) is now applied to an operating case of interest

for the phase detector, namely when the signal and reference

are in quadrature, i.e. qo = 0. This is additionally desirable

because the output signal-to-noise ratio is not meaningful where

no measure of signal exists.

In this case of null operation in the absence of noise,

the output mean value (e 0) = 0, even with signal present. From

Equation (21), 0 = 0, so that from Equation (B41) of Appendix B

the expression for (eo2> reducas to the single integral:

= o?'-j=dx 6~ M_ ~;2 dx ,(27)

where 1Fl stands for the confluent hypergeometric function, a is

defined in Equation (21), and r is the dimensionless ratio:

y = B2  (28)

Setting A = 0 in Equation (27) and substituting it and the original

form into Equation (26) with <eo) = o yields an exact expression

for the output noise-to-noise ratio.

To relate the calculations made with Equation (26) for

this quadrature case to laboratory measurements on actual devices,

the above parameters are expressed instead in terms of the total

received power Pi, the reference power Pr' the input signal-to-noise

power ratio "a," ane the reference-to-total received power ratio

"b". These are given by the relations (for unit resistance):

Aý 2  P B2  (29)
i A2 E r 2

,2 P
44 a = b r (30)
it 262 FI
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As a result, the parameters a amind r appearing in Equation (27)

take the form:

a + g (1 + a) ,(31)

S(32)

The evaluation of the output noise-to-noise ratio using

the exact integral: formula of Equation (27) led -to iwzolved time-

consaming numerical procedures, so instead various approximation

methods were considered, the details of which appear in Appendix C.

A simplified functional form which fitted the confluent hypergeometric

function over a range of the parameter r led to an approihmate
12result in terms of the modified exponentlal integral. Dit since

the latter's numrical evaluation became quite iavolved., further

simplifications were suught. As a result, it wve possible to

optain reasonable closed-form expressions for two asymptotic cases.

These are:

Smji. Reference Amplitude Limit (b--O):

6 1/2< ,( _ ;.) ,(33)

Large Reference Amplitude:

1/2

1 + 2a + 15 9(3+a)+ 2(6+6a+a2)j
i tr or

where T is expressed in terms of "a" and "b" by Equation (32).
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The preceding formulas are presented graphically in

Figure 3 in the form of curves of 6n/68 for the quadrature case

(Co = 0) as a function of "a" for t .e lower limit and large

levels of "b". Intermediate reference values would result in plots

falling in between the above extremes, and these would be appropriate

for subsequent comparison with experimental data. But the curves

calculated here do reveal the principal effect of the signal on

the phase detector in decreasing the output noise over that in

its absence, as seen in Figure 3 by the dn/6 v'alues staying above

unity.. This is cqosite to the-behavior of amplitude detectors,13

so judging from the output noise-to-noise ratio it can be concluded

tbht the phasee detector does not operate in the manner normally

ascribed to detection processes.

The spread between the curves of Figure 3 illustrates t..

relative merits of the two extreme modes of operation. For large

.reference levels, the 6nIdsratio becomes insensitivt to input

s*nal-to-noise ratio chaes, but never rises -mch above unity.

ft the other hand., the uss of a low-referenoe level results in

significant output noise decreases vith the signal present. w•n±ch

could serve as the basis for so*e týpe of detection scheme, but

here the 6n/6s ratio is affected more by varying input conditions.
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5. CAICUIATION OF OUTPUT SIGNAL-TO-NOISE RATIO

For characterizing the reaponse of a physical device to

a combination of signal and noise waveforms, the most commonly

used criterion of performance is the "output signal-to-noise power

ratio," denoted by "a ". For the type of input to the phase0

detector and with the output specified in terms of voltages the

square root of the above quantity is thus defined as :14, 15

javerage output for signal]_ [average output for]
I plus noise input J noise in tonly (

-Fo= •standard deviation of the output azout,
Ithe mean for signal plus noise inputJ

Since from Equation (20) it is seen that for no input signal present,

i.e. A = 0, (eo> = 0, then in terms of the moments previously

discussed, this ratio is given by:

el= <6e0) (36)

As indicated previously, the exact evaluation of (e 2  does

not have a form suitable for application to Equation (36), but more

tractable approximate expressions vere obtained for limiting cases

of the reference parameter "b." Specifically, the derivations of

Appendix t yielded for the voltage output signal-to-noise ratio

in the general case of an arbitrary phase angle 9o separating the

signal-reference quadrature condition:

Large Reference Aflitude Limit (b--too):

"-v/i x Jesine , (37)
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Small Reference Amplitude Limit (b--,O):

where "a" is the input signal-to-noise power ratio defined in

Equation (30), and 10 and I1 are modified Bedsel functions of the

first kind.

Graphs of the calculations with Equations (37) and (38) are

given in Figure 4 in the form of curves of-•° as a function of

the sine of the phase angle •o for two values of "a" and. the limiting

reference levels. In spite of the radicalaly different functional

forms exhibited by the preceding two expressions, their resulting plots

are seen to approach each other very closely o'ver the 1•uitial angle
range for each vainpu of inut signal-to-noise power ratio. Thus,

such a relatively narrow spread shown in Figure 4 would appear to

include the curves at intermediate reference levels, which should be

the subject of computational verification in the future.

For the first off the signal-reference quadrature condition,

the voltage output signal-to-noise ratio varies linearly with sing

with the constant of proportionality being -•t or slightly below
over a wide range of reference levels. With larger phase offsets,

the limbitig curves will diverge more markedly due to the subsequent
•artere from linearity of Equation (38). But with the phase detector

thejcaily operatfmp in quadrature, a small phase shift occurring

bet Fen sitral and reference will produce an increasing output signal-to-

noise ratio which provides the means for cor. 9t;ng such waveform

displacements.
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6. CONCLUSION

The analysis of phase detector performance for a signal

plus noise input was carried out for a balanced circuit with two

peak-detecting diodes. The model of narrow-band Zaussian noise

used ws considered appropriate for most of the applications

encountered. The criteria of "noise-to-noise rato• "2d

"signal-to~noise ratio" at the output were selected to evaluatte

the utility of this detection process. Although computational

difficulties precluded obtaining a complete range of analyical

resujlts, the approximate formulas which were four.d served to

illustrate the salient features of phase detector behavior.

For the signal and reference in quadcrature, a relatively

small decrease in output noise resalts when the signal is present

for a wide range of input signal-to-noise pourer ratios at large

reference levels, but a larger spread of output noise-to-noise

ratios is exhibited at low reference levels under varying input

conditions. When the signal and reference depart som.whet from

the quadrature condition, the voltage output., aigal-to-noise ratio

is roughly proportional to both the sine of ttis phase displacement

and the corresponding input ratio (for values betwee, ""ity and ten )

over a wide range of reference levels.

It is the aim of this somc,.-t restricted analys o

encourage further efforts in invest.gating more general phase

detector performance both from a thsoratical and experimet.al

viewpoint. One ouch study has considered the same type of circuit
16with noise present in both the signal end referznce bewnelsj but

the results are too complicated to yield prac---al infoizatIon &tA

in addition stress the square-law behavior of the diodes which i.

practice is a less realistic model. Since equipment apgplications•

are tending increasingly toward the use of more sophistIcated phate

detectors to improve performance from the 'oise :md other standpoints,

it becomes essential to extend the presently kiown analytical te'chniques

in order to understand the behavior of su-lch devices.
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AFPEN1DIX A

- VALUATION OF THE~ OUTPUT NW-VALUE

The integral representation for the phase detector output

voltage eo(X,y), Equation (19), and Equation (12) for the joint

distribution W2 (x,y) are substituted into Equation (16) and the

orders of integration reversed. By the addition formila for the

hyperbolic sine:

sinh(u + v) = sinh u cosh v + cosh u sinh v (Al)

the expression for <eo) contains only products of intehrals in

x and y:

o 1 dt ep :t Bt+A) e.)

exp {[t~x+) + sinh {Bt(x+A) sin dx

Jexp{. + cosh < cos

+ exp { t(x+A)2 + cosh (x+A) sin dx

e 21

The second double integral in the bracket vanishes

because of the integration with respect tc y of an odd function

over symmetrical limits. If, in the remaining part, tha variable x
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is translated by an amount - A (the infinite limits remaining unchanged)

and the square is completed in the resulting exponent:

ex r2lt x A2 fl + exp4 L2 [ - 6 ( t + 1 4j1 -1 (A3)

then there results for <eo)

le = 1 dt I)A 2  -lj.Ji xtyt' A'262f3/2J -t3- exp+- 2exp 1 t + 2:+ X(t)Y(t) (AI)

where
0

X(t) =f exp<{(t + )[x - (t + •LI sinh(Btx sin ;o) dx (A5)

Y(t) exp + . cosh (Bty cos •o) dy (A6)

The above integrals are evaluated by Reference 17, 2 p. 1.64,

nos. (3) and (4), yielding:
+21/2 22 2 t-1

X(t) 1/2=t 2 exp B 0 s "

26 2 ( 1 sin 9 0

Y(t) 1/2 + exp t + ()26 2 4 2
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Multiplying Equations (A7) and (AB) together, combining and

simplifying the exponents, the following expression is obtained:

xWt~Y(t) t +z L I+ 2 t (t + ()

262 e P 7 -262ý(A g )

Noting from Equations (A4) and (Ag) that in the exponents

1 + 1 1- = t t

the substitution of x(t)Y(t) into <eo) and canceling terms yields
the more coapact form:

/'eo) = 263 ]122 (t+ )exp i týt + -2 inh 0+t(t + 2 -};(A2D)

where:

L 1 A-A2 +B) ; 2 sin (o (All)

The evaluation of Equation (AlO) proceeds from Equation (A9)

by making the substitution:

t -L -1= 262 [l t~t +~~' , (A12)

which results in <eý as the difference of two integrals:
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(e JtX exp{ at t + slh t t + (A13)

In the firt integral an integration by parts is performed, ltting:

u = exp (.ct + 1 sinh ptt + 1 ; dv = dt

Taking the indicated differential and integral yields:

du= t.exp a t + -) 1- L osh ~t + 1Jj - ainý t -~)j

V 2

V - - 2

tl/2

Substituting into the parts formula, the evaluated part vanishes at

t=. 0due to the t"l/2 factor and at t = 0 due to the hyperbolic

sine factor being of order t. Putting the remaining integral part

into Equation (A13) and arranging, the result is (eO) expressed

in three terms:

t_- lp1

a 1-tt +t + {osh -(2)
-exp t + 1) sJnh (t + (AI4)

" dt _I "-exp - ttt + 1-1 sinh
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Next, the following chnge of %wab ale is made:

u = t t + - '; 2. u = dt t + -

1 L9Lv1/23).

26•(1-u) t2 "172 2U(l26)1

at t 0, u = 0; at t = s, u = 1.

substituting into Equation (A14) results in simpler integral forms:

-1 U .U ) 1/ 2 s i n h Ou d u)

0

f1 11e.0 ihP u A5

Two basic integrals are to be evaluated in Equation (A15),

one being defined by R(p):

1

R(p) :1 C-P••du (A16)

This is found directly in Reference 9, table 4.3, p. 138, no.(14),

for t = u, b = 1/2, V = 0. Noting that [(2./2) = , there results

the evalwixtion:

R(p) -
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where I1(p/2) is the modified Bessel function of the first kind and

order zero. Next, the second basic integral to be evaluated is

s(p), defined by:

S(p) = (l - )12A8)

First, differentiating under the integral sign with respect to p yields:

= f"ol 1/1(l _ u)1/2 e du (A19)

Applying Reference 9, table 4.3. p. 138, No. (14), for t = u,
b = 1/2, V = 1, noting that KF.3/2) = VJ/a, there results the evas.uation:

dS•p) -p/21(A0

where 11 (p/2) is the modifiea Bessel function of first kind and order.
Equation (A20) can be integrt'ted directly by using Reference 18, p. 57,
no. 3.105, for V -l,.u = p12, noting that Il(p/2) = 1 (P12):

s(p) = E-P/ 1 +° + C (A21)

The arbitrary constant is eva4uated at p = 0, yielding:

c = s(o)- - (A22)

where:

o) = ((- U)2S (0) d 11 u (A2,J)
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From Reference 19, p. 196, no. 855.1, for x = u, m = 1/2, n 3/2,

substituting in for the required gama functions:

2ll- = r2 =o ,1

S(O) is found to have the value:

s(O) - . (A24)2

Substituting Equations (A22) and (A24) into (A21) thus gives the

complete evaluation of S(p):

2 ' -P/2 [r n ;~
S(p) o [ 22 (A25)

By expressing the hyperbolic sine and cosine in terms of

exponentials and combining them with the other exponent, Equation (A15)

can be written in terms of the basic integrals just evaluated in the

following rearraned form:

Keo ) 6 [(a+ )S(a + )- (a-P) S(a-)

+ R(a + ) R(. - (A26)

Substituting Equations (A17) and (A25) into Equation (A26) with the

proper arguments and col lecting terms, the evaluatibn of the mea

value <eo) of the phase detector output is complete:

(e) 6 - [\l1ý xpUC40)I 0 l.I (.G4PI 112I

e-p L____ r (A27)

This result appears as Equation (20) of tie main text.S
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APPENDIX B

EVALUATION OF THE OUTPUT MEAN SQUARE VAIME

The integral representation for the square of the phase

detector output voltage e0
2 ( xy), Equation (24), and Equation (12)

for the joint distribution W2 (xy) are substituted into Equation (17)

and the order of integration reversed. la, this case, however,

products of integrals in x and y are not immediately obtained

because the modified Bessel function does not have the simple

addition forvaula previously seen for the hyperbolic sine in Appendix

A. Nevertheless, a separation of integrands can be effected if

an integral representation for 11 (z) is applied from Reference 20,

p. 202, no. 179, for n = 1 and z = the given argument:

I11 Bt [(x +A) sin 90 + y eos 90(Bl)

d8 decos eexp -Bt cose9(x+A) sin o+ycos q.
0 O-Jo

Putting Equation (Bl) into (e02) and again reversing the order of

integration, the following product integral form is obtained:

ýeo2ý B -o dt xp B 2

X - 2 exp -- tf de cose (B2)

0o 0

• in CO (x+A) exp -- (x+A+ 2 + Bt cos O(x+A)sin dx

00 exp t + l 2 Bt cos Gy) cos dy

+ cos 90 exp i-.t(x+A)2 + - Bt cos Ox+A) sin 1°dx

* y ei I-t + y2 y Bt cos 9y) cos 9o dy
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If in the integraticus with respect to x, This variable

Is toranlated by an smoiint - A (the infinite limits remaining unchauged)

and terms in powers of x are coilected in the integrand, then there

resultse for ý
0

(eexp 2\ A tjd cos • (B3)

* exp - X2 (et)T.)(9,t)sin o ,)Y2(0,t)Cos 9o

where:

x2 GThe )oei•er areevluate + x Reernc - 7 Bt p. nin n.(33)an
(6),suprssngth exp (1)fatronbt sds0

Y-(9,t f e) t -- a 2  - (Bt cos ecsi qx y (B4)

J-0 ~26 21 6

xp e+ --LIa*

10

f60 supesxýteexp [-cfactor ond bot sid~es:(b 2  (9

CIZ /2 a
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both integrals being valid for a> 0., rhich is satisifed in this

derivation for

a = t + (Bc")

MAking the appropriate substitutione for the constawt b from

Equations (B)4) through (B7),. there result the evaluations:

X (8,t) = I/It+ ex_ D ( + i( Bt cos 3 in T.02

x 2 (8,t) 6/2 It+1
2ABt cos 9 sin L

t -21
e 1(t = + IL- - B ';s 9 sin 9 (BL2)%4 26 2 2 "

e(-B cos (9 (or.

-/ 2 ( -Bt coos s T ,

21

exp it+ (-Bt cos 9  cos 9 ) , (Bii+)

kaltiplyirng Equations (B12) andi (B1.3), and (311) and (B14~) together

in pairs and simplifying the exponents, the following expressions

are obtained:

X2(191t)Y-(emt) = -Bt cos -s q

"2621 os



STL/TM-61-oo00-19008
Page 4B

X1(~) 2 Gt = ift + - (Bt cos Bcos9

26z 0o+B0 B6

6v er cos e sinp + B2t2e~s2O " (316)

NextM, in the exponents the following combination is seen:

( .exp z (.+ ej1 xpJ A ~ + 1Vt (B3.7)

Thus, upon substituting Eqi.ualions (315) and (316) into E quation (B3),
and making usae of Equation (B3IT),. there results for /e0

2 )

rearrangement and oting that sin 4° + cos 9)0

- -+o exp T t - T62 t 26'BB o

B(2o ti - 2 J 262 0S0cos 3e- , t + Cos (-s18
7-2 1 2i2Jd

where again the parameter P is:

262
The Jitegration with respect to 9 is carried out in terms

of the following basic integral, denoted by S(p,q):

Sip,q) = J xp(p cos 9 - q cos 0) do . (B20)

It is seen from Equation (B18) that the desired integrals will be obtained

frcx Equation (B20) by differentiation with respect to p and q. The

evaluation of Equation (B20), which does not appear obtainable in closed

'form, proceeds by expanding eaca exponent in a power series:
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exp(p coOA6) £ • e , (BU)
n=O

exp(-q cos 0) = _ __ osm O
m=4, (B22)

Putting into Equation (B20) and intercehanging the order of operations;

there results;

s(0)= m n M
S(P.,q) Y- L LLL P1 Co n+m e-3 Sm' n. fc s " ~ 3

n=O M=O M ! j

Now, breaking up the integral into two parts, one with a

range 0 - x/2 and the other x/2 - K, translating 9 in the latter by

- 9/2, it can be evaluated, by Reference 19, p. 196, no.854.1, for

m-- 2n-M., x = e, yielding upon collecting terms:

x 2n4 mr / 2 -mr t 2~CO 0 4S0 d I9Cos 19 d.19+ r CosnOd0 A'J Jo .f/a

rn/2 r %/2

0 +-d9

= cosn+Ome ad + (-1)on-m sin2n+me de

JO0

• m+
Cos 2n= d (B24)

Jo 2 Qn+

But it is seen that

io; for m = 1,3,5, ..... odd ,1 + (_) ( (B25)
+2; for m = 0,2,14, ..... even .

Thus setting m = 2k, for k 0, 1, 2, ... , there results instead of

Equation (Bzl4):
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j os2(n+k)e (i = 1/2 Rn + k +) (B26)o C 1 n + k +ý 1) "

Upon substituting Equations (B24) through (B26) into Equation (B23),

it is seen that only the even terms in the summation over m contribute.

Thus, setting m = 2k here as well, the following form for S(p,q) is

obtained:
1/ 00C n 2k n + k+ 1)

S(pq) = 12 g E f-o . (B27)
n=O k=O Iýn + k + I)

Next, the sunmation over n is performed first, yielding:

Ss (p. 1 -1 (n+k+) p+.)(B28). 242 ••.k• U. -r.,Vn + k + 1) P •8
k=O n=O I -

The latter series is recrgnized in terms of the expansion for the

confluent hypergeometric function from Reference 21, II, p. 6,

no- (32), fora=k+ 12, a k + , z=p:

n cn k+ 1 n) 2{k+:) (k + 1 k + 1 p) . (B29)

Putting Equation (B29) into Equation (B28) gives the expansion

foruila:

S(p,q) =,1/2 2 1. Fk+ )=q Ik 7kT -+ )T 1F.(k + -;k+l; p) . (B3o)
k=O2

The desired integral evaluations in Equation (B18) are obtailned

from Zquation (B30) by suitable differentiation. These are:

F
exp (p cos - q cos G) cos 9 di = - qS(p,q) , (B31)

Jo

~rA

exp (& Cos 2 - q cos 9) Cos 2 8 da = S(p,q) (B32)
0 

p
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The required derivatives of Equation (B30) are obtained with the

aid of Reference 22, 6.•4, p. 254, no. (8), for a = k + l/Z,

c = k + l, x = p, *stands for 1F 1 , and making use of gamma function

relations:

-~00 2k-i F7(k + 1
1S(p,q)= ,1/2 •z q-k'r[.P+k + F 1(k) .Spq ) X~ c-z : i•(k + 1)1 zF 1(k + -2P k + 1; p)

k=

CO 2k+l ~ -
it 1/ z 2 .Fl(k + I k + 2; p) (B33)

k=: F (k + 2 ) 2
S==

O= / 2 k 7(k + ) (k +) F-1--
TP k=O [(k + 1) (k + 1) 1F11 2' + 2; P)

2 F(k + )
7 1/"' 2 r1 2 F (+k + 2p I (B34)

, I• Zk ! l-k + 2)j'1.C1 2 , k< + 2; t)(3+
k=O

Finaly.y, making the substitutions

B 2 t-2 !t + ; q = Ot t + 1

in Equations (B31) throug), (B3A) and substituting appropriately into

Equation (B18) and arranging, there results the following expansion

formula for (eo2):

(e2I d -2 e B 2" A211
oe° = 2 dt 22) exp -2t- t + •

(+t 2k  -2k k + +) F 2; t +-I+a. I ,1lk+ 2p 4
k=O 262 7 +7  4F26622

* (2k + 1) B + Z It ++21 ] (B35)
I B IJ
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Applying the gama function relation in Reference 22, 1.2, p. 5., no. (15)

for z = k + 1, it is found:

= P[2(kl)] -22(k+l) -l(2k.+1)01 - F[2(k + 1)] 2 , 1/2 -- (k + 1,) [(k + 1 + yý)1

= 22k+ k Rk + ) • (B36)
1 /2

Putting into Equation (B35), cancelling, and collecting terms, noting

that fl(k + 2) = (k + 1);, <eo 2' takes the form:

1 j p( )2k (t + l" + ; + 2LI; B 2 + 2

k=O20

2k + 1) B + - t + -L(B37)

While the above form has been considered for approximate

evaluations, it is more convenient for exact numerical integration to

mke the change of variable:

x tt+ - ; L 1

t = (- t + {1  = 2-62(2 - x) (B38)

At the same time the Kuaer transformation is applied to the confluent

hypergeometric function from Reference 22, 6.I, P. 253, no. (7), for

& = k + 3/2, c k + -,1 x = (B 2t 2! /) (t + 1/262 , and 0 standing

for 171:
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F1k + k +2; B 2t +

262

4 t +e i J k + 2; - 22(B39)

Coubining the exponents containig B2 to yield:

exp (=B.' exp{ g~+4 1 > exp B( t +~) (B40O)

and then app.yiiig Equation (B38) to Equations (B39) and (B4o) vhen

substituted into Equation (B37), the new expression for (e 0
2 ) contains

integrals over the range 0 to 1:

",.1
e 0 ax (2k + 1) 13 + B (U - x)

2k k + 2; _ , (BB.)
V (k ~ +F (W 2;(-)

where the parameter a is defined as in Appendix A:

CL Aý + (B•)

Equation (B41) is used as the starting point for the evaluation of

/e0 ) in the quadrature case discussed in the main text and treated

in Appendix C.
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APPENMIX C

APPROMATE EVALUATIONS FOR THE OUTPUT NOISE-TO-NOI
RATIO FOR THE QUADRATURE CASE

The calculation of 6 a frow Equation (27) by numerical

integration for a range of reference, signal, and noise parameters

becows quite time consuming, so it is desirable to seek accurate

approximate evaluations where possible. The derivations presented

here cover the caaes of small and large reference amplitudes.

Small Reference Amplitude

Examitation of Equation (27) for (e 0 ) would indicate at

first look that for B << 23/2 6, it is mrely enough to take the

first few terms in the series expansion for the confluent hypergeometric

function, found in Reference 22, 6.1, p. 2483, No. (1) for a = 1/2,

c = 2, x replaced by - (B2/862 )(x2/1_x):

4W42 2-32 X2 1 4 2 X2] ~ lX2]
1!ýv82 (1-7)1 86~2 (lX) _.]

But an integration between the limits 0 and 1 must subsequently be

carried out, and the above series obviously diverges as x--1l.

However, closer examination of Equation (Cl) reveals that

the square of the second term gives the third term. With the above

series alternating in sign, and denoting by y the quantity:

2
-X) (C2)

where T is the normalized ratio:
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B (c3)
862

then it is seen that the first three terms of Equation (Cl) are,

identical with corresponding ones of the alternating series found

in Reference 19, p. 3, Uo. 9.04j, for y =x

l y+y 2  Y3 + =- 1 +

Further, the fourth ternL of Equation (C4), which in terms of x

from Equations (c3) andr (C4) becomes

differs from the corresponding term df Equation (Ci) by about

13%, which for small r would be negligible over a considerable

range of y. Ignoring for the momemt that the series in Equation

(D4)-does not converge for y 1- , it woul.d appear that a possible

approximationtD IFl for small I is:

1+1
12P 2; 0C5)
?l1- + 2 lx

It still rt-mains to see how the approximation behaves in

the range 1 = y m a corresponding to values of x approaching

unity. At x = 1, the denominator of the right side of Equation (C5)
becomes infinite, so the over-all expression is zero. From
Reference 22, 6.13.1, p. 278, no.(3), it is seen that as the

argument of 1F1 approaches -so as x--l, the asyMptotic behavior

of the confluent hypergeometric function for the parameters 1/2,

2 is:
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212M- I it 2---xO as x--•

Thus, the original function and the proposed approximation agree

in this important respect.

To con•cmaively check the accuracy of Equation (C5), it

is plotted against the attual function for two values of T, 0.1 amd 1,

on Figure Cl, over the range 0 i x i 1. The case r = I is

contsidered the upper liit for the approximation, for which

Equation (C5) reduces to the special form:

('-"2IF p2-r- (c6)
I V x (2-x)z

The exact values of 1F1 were obtained with the aid of tables in

Reference 23, PP. 698-713, since it can alternatively be expressed

in terms of exponentials and modified Bessel fumctious by:

2;' .t) - et/2 {oR0( + Ill 11' i (C7)

which can be derived from relations given in Reference 22,. Chapter 6.

The very close fit for the r = 0.1 case plus the good agreemint for

the limiting case gives confidence that the approximation will be quite

accurate wver the range .1 4 rz 1., and even better for smaller r.

Equation (C5) is applied to the evaluation of <6eo2) by
Equation (27) by revriting the right-hand side in normal ratio form:

1 . = - ). (C8)

1 +2 X

The roots for the denominator quadratic in x are:

=_+ : [ (l. O.-r)•~] (C9)
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which are real and distinct for r Z 1, with equality considered as a

special case by Ekvation (C6). The above restriction for real roots

thus coincides with the previously considered upper limit for the

approximationo Now, the right side of Equation (C8) can be written

'Ath the factored denominatcr, uaing Equation (C9):

7 1-i)T

This expression can be expanded further b7 partial fractions, which

after some computation and combIring with Equation (C5) yields the

desi.red form of approximation:

l~~l(2'~9 2;- ~ ~ jy7 (C1n)

Upon substitution of Equation (ClU) into Zquation (27) with

Equation (C3) for the pcrmmter r, there results for (t0:) upon

arrangentnt:

B2Y fc"d 2 1z

SJ0

Since for 0 < r <1 the inequality ;+ > 1 holds, the denominators of

the integrands in Equation (C12) do not -anish over tbe range Df

intfgration, and thus the integrals exist . They can be evaluatcd in

terms of the modified exponenL.al integral 11(x), defined in Reference 12,

21-.- P- 143, znoM.(, as a. Cauchy priniipal value:

(.0 = -- , (cG03)

x C:

i~e, i• /+' M•-0
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By making the translational changes of variabl.e

t = a(x - g+)

in the appropriate integrals of Equation (C12, breaking them

up into two components with infinite upper limits aed applying

Equation (C13), there results upon arrangement the. evaluation:

1 0
1E ( dx e (-00pdt d-tJo(•)' = tP("÷•-• •

- -exp (-C41+) - .(g+- i )

Substitution of Eq', >5.on (C14) into Equation (C12) yields the

expression for oý .0 0 4 1.

Fo• the limiting case T 1, the approximation to IF1 ,

givez by Equwtion (C6), which takes the expanded form:

4 (2 (X-)2J:£'1 = ; L-" l , (x_22 .0( 15)

Putting into Equati n (27) gives for Keo 2)in this special crise:

"f• x -x

\ = IE d1 dx
0 /1 1 (xa 2  0 Tx-T-, (5

vhere a.= al and the integraUi again exist. Integrating by

.;ts in the first term. with

U1 ,a dv x - 2

(x-2) 2

yields upon combining terms the form:
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2Bc4 , ( i.____I (C17)." Is -• 'j (- + (4)

The latter integral is evaluated again in terms of modified

exponential inte,.ralA as before by 'the cali e of variable t = kx-2)

to give:

1 0&C, dx 4Ee t d C _ tr -2) t f tJo (i-a) I T c " T

.- [i3(z5) - (5 .(c18)

&%betituting Equatioa (018) into Equation (C17) gives for I

2Bo (A +a) ( ) - + ) - (CI

vhere frtm the definition of a by Equation (21) and -r by Equation

(c3):

To complete the calculetion of the noise-to-noise rati, ,

it is necessary to evaluate the expression for the mean square

value for zero signal slitude, A = 0. Under this condition, he

folloIng parmeter redýuctions occur, denoted by zero subscrip•t:

Go = T" (d)o = 1. (C10 )

Puittinig app~ropriately into Equations (C2a) and (C14),, the formula
for (eo) at A - 0 is obtained. Finally, the substitutions into

tutionv (26) are made vith A 0) = 0 to yield the &%ippoxi~mute

expressiorn for ud
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Snall Reference Amplitude Limit

Here, the appropriate formula for (e0
2 ) can be found from

the limiting form found in Appendix D, Equation (D30), for the

general case, using Equation (30) and noting from Equation (21)

that as B-10 :

A2
a=A a .(C12)

262

Making the appropriate substitution in the above-mentioned expression

and setting %o = 0, there results the expression appearing in

Equation "33) of the main text for 6r16 s since as A-40, the

indeterminate evaluation •" elds the factor B2 /2:

e. - a) . (C23)

Large Reference AinplItuAde

The use of Equation (27) as a starting point for attempting

an approximate evaluation of (eo2 ) for large B led -to difficulty

in assessing the validity of thte assumptions made. Further, a

reduction of the corresponding limiting forntla -. n Appendix D

for (p0  0 gave an oversimplified result of no value. Thus., to

obtain useful expressions, an asymptotic expansion of the origiall

phase detector output voltage was taken as the basis ir the following

derivation.

NotIng from Equations (8) and (9) that the voltages e1 mad

e 2 from the circuit halves differ only by a sign in one term, they

can be rewritten in combined form as el,2 after factoriLng out B/12:

e1 2 I P+ + sin (C.2:)
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It ia now assumed that the reference amplitude 11 is sufficiently

larger than the input signal plus noise amplitude p for all

values of 9 to make the infinite series expansion of (I2 +

valid, where:

Z= 4(:p iq~ 1. (C25)

From Reference 19, p.2, no. 5.3, for x = z, the condition is

and the expansion is:

(lC..lIGz3 • z1+ ... (c16)(1 + z~/ -z+ 1 z + Z z( - )

Reference 24, p.U17, no. 6.33, for z = x gives the general term in

this expansion for k ý 2:

( 1 )•l 11-3- .... "j2k-3) .k

•k! 2k

But since

1.3.5.... (2k-3) (k-- -zk=
.2 k-2(k_2),

Equation (C26) can be rewritten in sumation form as:
1 (-1) k( 2k-3).'_z

(l + Z)2= l+ z - I (c27)k -k22. -2:(k-2):

Raising Equation (C25) to the k-th powr and applying the

binominal expansion of Reference 19, p. 1, nos. 1 and 4., for

a = p/B, x = sin q and n- :

|I



STL/TM-61-0000-19008
Pame 10C

Bk + a + in ()
z = -

22k k k!(+1)m k k-,*

B m=Oa m!(k.r) (2)} Pm B i or
a

k 2Zk k (€+l)m 2k- m
z =- k O !'(k-Sin (P (B28)

B Zk M=0_ .k_,

Substitur'ing Equations (C25) and (028) into Equation (C27) and

arranging, there results for e 1 , 2 according to Equation (C24):

e,2 = l+ B -

k 4 k (+-l)mk= Bi ,(k-m)•

- : z (mTB -P=siM  . (c29)
k=2 B" m=O

Thus, upon putting Equation (C 29) into Equation (11) and noting the

sign correspondence, the following expression for the phase detector

output voltage is obtained after suitable canceling and combining

of initial terms:

e = 2p sin p

00 k 4 , GoB (.l)Ik2. j Bmp 2k-mS (C-30)
-2 k= (k-2)! B 2-M= O :(k-m)"

But it is readily seen that

i0 ; for m even,

2 - (-l)m o
S ;for m odd,.
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Setting m= 2n + 1, so that for

m = 1,3,5,...,k ; n = 0,1,2, ... ,

where the latter notation means that if k is odd, it is the

upper limit of- the sun, but if k is even, then the sum terminates

at the next lower integer index, (k-2)/Z. Thus, in place of

Equation (C30), there results with the index n:

e = 2p sin q

2 J B 2n+1
X.L.-Y~2-) - 2(k-n)-l i2n+l T 01k2B 21 (-2)! n=O (Zn-r.).(k-2n-Ij

Writing out the first few terms of the expansion yields:

+ = 2ps sin 4p 3 L.0.

+ '(B.Lp2sinq• 13 sin3()

- sin (p + (c32)

1 79 sin q) +R- 3.2 55:01)ý(C2
B7 2 .' 1 -!1

B"9 3.' -1 .' 3!2' 59 3 " -!

B M:5: 3!3!.11

4 a! __B B3 B5  9 B7  7+ 13 1 lsin 4P + P p]li3 •-Tp si q p7s in7jp

B1 5! l-- + VO!
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Multiplying out the numerical factors and collecting terms in

inverse powers of B up t. B-6 , the following expression for

e is obtained after arrangement:
2ps3isin3

=2p sin ( -. • (p 3 sin ( - ()
B spn sin q

4B
+4 (7p 5 sin 5  - lop 5 sin 9 + 3p 5 sin p) (C33)

B

8- (33p7sin7 ( - 63p7 sin5 9 + 35p 7sin 3 (p - 5p 7 sin ) +...
B

In order to compute the output noise-to-noise ratio for the

L) quadrature case, only t1he ensemble average of the square of the

output, /eo 2), is required. So, upon squaring Equation (C33)
and collecting ter-as up to 1/B 4 only for the asymptotic evaluation2
considered here, the approximate expression for e0 becomes:

A

e0 - B16 (2p6 sin6 sin4 p6 sin 2)

+l 6 2p 6 - 3p 6 sin + sin29)

B

which furthe. t.-i-onometric simplification reduces to a form more

convenient i. averaging. Noting also from Equation (10) that for

the qwIrature -- se, q = 1i' it is found:

2 2 2 4  (p2 sin2 ()(P cos2eo04 I i P B 2 i P Cos 9 )

16 6 2i 4i 2i
+ - p sin' (p(2 sinP - 3 sin( + 1) . (C34)

The ensemble averaging of Equation (C34) is simplified

considerably by the fact that some of the factors can be expressed

directly in terms of the in-phase and quadrature noise components

and the signal amplitude by referring to Equattzns (2) and (4).
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From them the followvg relations are iound:

p2 sin = Y ; (p$sin p•21os~o.2) = y (A+x)2;

P,6 sn6f i 6 (C35)

MakJig the appropriate substitutions in Equation (C34) and taking,

the average on both sides, there results for ýeoZ):

4e[) --. 4~ 2 ý(A+x)ý (C 36)
B B2

The terms expressed in rectangular components are treated

first. Since x and y are itadependent Gaussian random variables

with mean value zero and standard deviation 6, then vth the

aid of Reference 25, p. 83, no. 10.5, the following , .ages are

found:

(X) =0; =x0; =Xý 0; (Y) =0;

Further, since A is a constant, it is clear that:

/Ak • (C38)

Ccoputing the average indicated in Equation (C36) with the aid of

Equations (C37) and (C38) yields:

<(AA+x2) = Ky2A2> +2 •,2A1I•+(yx2•

= / k2 + 2A + or

<2(x)/ = A26'2 + 6 62 (A? + . (039)
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The remaining two averages to be found in Equation (C36)

must be determined in a probability sense from W2(p,qi), the

Joint density function of amplitude and phlse of the signal plus

noise given by Equation (13). The resulting double integrals

are therefore:

/si 4\ rof 6f2 4
\~sn~/d*p P sin Ti W2(pA)ci) dq) (C40)

6r2g

-'00
psn'i = f" d•p 6 F sin 2q?1 W2 (P,qi)d~i (C~41)

Puttimg in Equation (13) and arranging yields:

Clex p (- 2 62) dp --- P exp
2%62  - 1

.2

/'F•

( PEii) A'2 ** exp "6
O2ffe -0 2

A py sinn2 e n exp A 2 c d~i

Applying Reference 20, p. 202, no. 175, for V = 1,2, z Ap/e

there results upon cancelling terms:

1/6 362exp(-e ýk62) 5 5 p 2 (ý (c42
sin I( - 2 P exp 262 dp(C2

A2 Jo

/6 sin2 \ P exp(-A2 /2c, 2 ) * [ 06 ep ý 2 I AP1dp (C43)oA ( 52 2

where I1 and 12 are the modified Bessel functions cf first kind of

first and second order, respectively.
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Next, a chage of variable t = p2 preserving the limits

results in:

'6 I& exlp(-A2/L>2)f ~2 
2 I-tl/2l x id c

(ýp sinU9pi - 2A2tIep -2t c4

($6in 21pj), exp( -A 2/2r62f t5/2 Il (A tl/2) exp (. )t . (c45)

Integrals of the above type can be evaluated generally in terms
of confluent hkyergeometric functions by Reference 9, table 4.16.,
P. 197- no. 20, and then reducing the results for special paramter
cases. But a more direct determination is seen by suitable
differentiation of no. 18 of the same table br V = 1, 2. This

gives the following formulas:

:0 /ti(2Y-t /2)ji-ptd d I •_2(2M/2t1/2),E"•
0

= - d•ft

L• L

= (3p-a) exp( ) (c-06)
p

f t5/2½j(a~3!2tl/2)e-Ptdit = 2 {ft] 211

o dp

Set=n the2 pa e valuesl
21 P

1 a A2

262 4
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in Equations (C46) and (C47), simplifying, and then substituting

appropriately into Equations (C44) and (C45), ther~e results upon

cancelling terns the ensemble averages:

(6 iqj) = 666 (3+~ 4 (c48)

6S/= 466 [6 + 6 + (A-] (049)

Finally, applying Equations (C37), (cg9), (C48), and (C49)

to Equation (C36) and arranging, it is found for the mean square

value:

B L.

B4  I ' L 2/L E. Ii ̂ .1, J
Bj261 *26 C(?

Yleazing use of Equations (28) and (30) wheia the dimezienlees

ratio r and the input signal-to-noise power ratio "a" are defined

respectively, the formula for (er) for large reference aplitudes

takes the simplified form:

(e 245- i.1 -.1+.2a + 15 - 9(3+a)+2(6+6+a I1- 5
0 2r 2+ 2 . J

From this, the for--Lmla for~eo2 ) at A = 0 is obtained by setting

a 0 0, which when substituted together with the original expression

into Equation, (26) along with (e N = 0 yields the approximatee0 t
expreaisiox for ~6 U16i appearing as Equatlan (34) of the main text.
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LIMITING FORMnAB FOR THE OUTPUT SIGNAL-TO-NOISE
RATIO FOR THE GEMERAL CASE

The approximate evaluations of Equation (B37) considered

for -o resulted from a number of computational steps which

tended to obscure the nature of the approximations made and

thus cast doubt on the range of their validity. Therefore,

it appeared desirable to find some alternative derivation to

obtain useful formulas, A very direct method presented itself

in which the starting point, instead of involving the integrated

results, ir the original phase detector output voltage expression.

TakIg Luations (8) end (9) as the voltages from the circuit

hav;es,, quar-..1, Pubtrstng., factoring, and using Equations (10)

and' (ii), there results the following form for e 0

e° sin (4 + (Dl)0 (e 1 + e 2)

Frma this relation, tvo limiting cases in terms of the reference

iaplitude are derived for the output signal-to-noise ratio Vifi .

Large ,eference Altude Lim•it

If the reference axplitude B is msuch larger than the

mplitw-e p of signal plus noise, then with the aid of Figure 2

it is seen .that:

e1 + e2  = B . (D)2)

Thus, for the liuiting case, Equation (Dl) reduces to:

en o B p sin (pid +g rin (tr)

.ind4ependent of B. Exanin and grouping terms yilelds:
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e 2 [(p sin q)i)cos CP + (p cooBf. sin 4J . (D4)

But the quantities in parentheses can be expressed directly in

terms of the in-phase and quadrature noise components and the

signal amplitude by referring to Equations (2) and (4), which

results in the following simplified form for eo:

e 0 2 [Y Cos p + (A+)sin (P (D5)

Upon taking the ensemble average of Equation (D5) and its

square, noting that factorn depending only on Io are independent of

this operation, it is found:

<e2 Qjýy2,ý cos2(P+ 2 O(ý+ (X)sin TOCOS

+ $A)+a% + ýý <Ax)% T (D7)

From the facts that x and y are independent 3aussian random variables

with mean value zero emd standard deviatioa 6, and that A is a

constant, the followlng relations hold:

<sx) • A <xE ions (A y) A (y) 0 (D8)

<A\ = A; Aý;('> 62; y2\) 6

Substituting into Equations (D6) and (D7) yields:

<%2 4( 62 4 A2 sin2 ff0 ) .(Dio)
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Apping te• sultD to Equation (36), simplifying and
=aking we of "quation (30) where the inP'At signal-to-noise power
ratio "a" is defined, -ýo is found to have the limiting formula
in the large reference amplitude ease:

VT I1-2- sin(DII)

This is found as Equation (37) of the main text.

SM1.. Reference Amplitude Limit

If the reference amplitude B is such sm&aer than the amplitude
P of s19al plus noise, then with the aid of Figuv 2 it is seen that:

eI + e2  L 2P (D12)

Thus for this limiting case, Equation (Dl) reduces to:

o 0 B sin ((P + ) , (D13)

independent of p. Upon exPanding Equation (D13):

eo0  B(sin cos + co in %) (D14)

it is seen that the factors involved in the statistical aferaging
cannot be reduced into simple rectazgular forms ae before. So,
carying o"t the averaging on Equation (D24) and its squam,

it is found:

B og[in i. coo.so + co a) sin ,V (-o15)

<2c) B 2 [<$Sir2fp co'?p + 2 <21A Ificos 9ý sin* 0COs I

+ on )si2 .,20< (1)16)
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ThA d•aired averazes are found from formulas analogous to

Equations (14) and (15), where for a genera, function of qi, f(gi):

(f do f f() W2(pp) dT (D1
Jo 'Jo

where W (p,•i), the-. Joint probability distribution of amplitude

and phase of the signal plus noise is given by Equation (13).

Its application to Equation (D17) for the trigonometric functions

indicated in Equations (D15) and (D16) follows in order of their

appearance.

<sin 91) exp(-A12 622) .p p exp,
W2O

.fo sin 91 exp, (L%2B dpi or

<sin~ 0 ,(Di.8)

since the integraad in 9i is an odd function over the 0 - 2x interval.

AlPplying Reference 20, p. 202, no. 180, for xn = 1, z =A/0:
(COO~i dp -~~21 pi( exp, (P~ d2, (p

where Il is the modified Bessel function •. first kind and order.
Making the change of variale x = p2 in Equation (Di9) results

in the form with the same limits:
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"/COB" e -. M> _ r j( exp dx 02) (P)
'I262 J j2

This integral ic evaluated in Reference 18, p. 63, no. 3.431, for

p . 1/262, X - 41/A2, V = 1,, a 3/2, which upon ubstiti.tion into

EqiMAtion (D20) end simplification yields for <Cos B,

05 -~expF (D1

where. IF3 is again the co:fluent hypergeoetric function. For

the particular parawter vL. ,-: -"ouid above, this function can

also be expressed in terms of %i.-inentials and modified Bessel

functions from relations given in Reference 22, Chapter 6, as

was the case in Appendix C, Equation (C7). The result is:

2; t et/2 {111tj + j (D22)

8ubotitut~ng into Equation (1)21) with t =A
2/2652 t 'w ves:

0o6 ') 3I eVx2 I..0 +i (I +1ý(i (D)23)

which is a more convenient form for ca) culation.

<ij 2 i) = ep(..A2/262) F * .P exp (- 2..

*2 j sina ýV, exp - dg 4.

Applying Reference 20, p. 202, no. 175, for V - 1b z = Ap/62, there

results upon canceling terms:

i e(-A
2 /26 ep (Is ' (D24
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The change od variable t = o2 preserving the limits yields:

/x(A~262 ) 1,(A 1/'2) exp t. d (D25)

This integral is evaluated in Reference 9, table 4.16, p. 197, no. 16

22

oro p -= i1ac, x A/'1C•, which when put into Equation (D25) gives:

exp(- 2 /ý 26 e -,A ] o
<Silý4i [1 ZA-A lxo"?o

k in 21) = !-ý [1exp (.ý) I (D26)

a form convenient for later parameter change.

00

(S in I Cos~i = L-2/2e f dp -p exp (-s)
sin cos q) exp di or

<S in1pCos qp = 0 ,(D27)

since the integrand in qi is an odd function over the 0 - 2x interval.

Finally, the remaining ensemble average, (Cos2NO, can be

found direc;1y from the result tor i by trigonometric identity

and the application of Equation (D26):

< 2q~i)<sBnnqi)
<costal = -sin2q,) = 1- sin?-Cp} or

0s291) = iexp ( ) A' (D28)
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tiu4equ ox (DMILO); (--3), and (iE6) to (D28) appropriately
i... ..EquaoOrrn• b and isimpifying there

results the deasired ensemble averages:

A 462

e 02 fi2 62 ([. _6) e 'cos 2 90+ a . o(D30)

Applying these results to Equation (36) and making use of

Equation (30) where the input signal-to-noise power ratio "a" is

defined, the limiting formula for -yi in the small reference amplitude

case is obtained:

_V" '-a/2[i()+'() (D)

[IJ1 + 111 i= 0-12(D1f ' (2 1 - ,t-) cos2,o

This is found as Equation (38) of the ma text.


